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Context, scientific positioning

The main topic of this Ph.D. subject is to exploit the link between polynomials and linear recurrence relations

of a sequence in order to accelerate either the computations of Gröbner bases for polynomial system solving or the
guessing of all the recurrences satisfied by a multi-indexed sequence. To do so, we aim to thoroughly analyze and

take advantage of the structure of the linear systems that appear in these computations.

On the one hand, polynomial systems arise in a wide range of areas of scientific domains such as biology [18],
chemistry [26], quantum mechanics [37], robotics [38], and computing sciences, including coding theory [39], computer
vision [28] and cryptography [22] to cite a few. On the other hand, polynomial system solving is NP-hard, even when
the ground field is finite [25, Appendix A7.2]. Moreover, the non-linearity of such systems make reliability issues
topical, in particular when complete and exhaustive outputs are required, in the context of numerical algorithms.

Likewise, sequences are a classical mathematical object and computing linear recurrence relations of a multi-indexed
sequence or determining the nature of this sequence based on these relations is a fundamental problem in coding
theory [27, 39], computer algebra [23, 43, 44] and enumerative combinatorics [13, 14, 15].

Whether it be for solving polynomial systems or for computing or guessing linear recurrence relations, one aims to
obtain nice generators of an ideal that are able to answer the following questions. Is the number of solutions finite in an
algebraic closure of the field of coefficients? How many initial terms and linear recurrence relations do one needs to
compute any term of the sequence?

These questions are easily answered when we have a Gröbner basis of the ideal at hand.

State of the art. Buchberger developed the theory of Gröbner bases and designed a first algorithm [16] to compute
them.

While lexicographic Gröbner bases are the tool of choice to represent the solution set of a polynomial system, often,
they are the hardest Gröbner bases to compute. For 𝑛 generic polynomials of degree 𝑑 in 𝑛 polynomials, computing the
≺lex-Gröbner basis of the ideal they spanned is bounded by C1𝑑

C2𝑛
3 , see [17]. This is to compare with computing the

≺drl-Gröbner basis of the same ideal, where ≺drl is a monomial order that filters monomials first by degree, which is
bounded by C1𝑑

C2𝑛
2 , see [29].

Since then, many efficient algorithms have been developed to calculate ≺drl-Gröbner bases, such as Faugère’s F4 [19]
and F5 [20] algorithms.

Since ≺lex-Gröbner bases are needed for polynomial system solving, as a caveat to their computation cost, Gröbner
bases change of orders algorithms have been introduced. They take as an input a Gröbner basis G1 for a monomial
order ≺1 and another monomial order ≺2 and they return G2, a Gröbner basis of ⟨G1⟩ for ≺2. This yields the following
framework, in the zero-dimensional case, where 𝑓1, . . . , 𝑓𝑠 are the original polynomials that are given as an input to
Buchberger’s algorithm [16] or to Faugère’s F4 [19] or F5 [20] algorithms to compute the ≺drl-Gröbner basis Gdrl.
Then, Gdrl is converted into the ≺lex-Gröbner basis Glex using the so-called FGLM algorithm [21] or faster variants
like the Sparse-FGLM algorithm [23, 24] or more recently [36] and then [9]. This framework allows one to compute the
≺lex-Gröbner basis in C1𝑑

C2𝑛
2 operations as well.

1Sorbonne Université, jeremy.berthomieu@lip6.fr,
https://www-polsys.lip6.fr/~berthomieu
Habilitation defense planned on 21st September 2023

1 / 5

mailto:jeremy.berthomieu@lip6.fr
https://www-polsys.lip6.fr/~berthomieu


The main idea of Faugère and Mou’s [23, 24] algorithm is to build a linear recurrent 𝑛-indexed sequence u using the
Gröbner basis at hand, namely Gdrl, and then to compute the smallest linear recurrence relations for ≺lex in order to
recover Glex.

On the other hand, many algorithms have been developed to guess linear recurrence relations for a multi-indexed
sequence. Regarding relations with constant coefficients, such as 𝑢𝑖+1, 𝑗+1 − 𝑢𝑖, 𝑗+1 − 𝑢𝑖, 𝑗 = 0, we can mention Sakata’s
algorithm [40, 41, 42], based on adding polynomials or multiplying a polynomial with a monomial, Scalar-FGLM,
based on linear algebra techniques, see [4, 5, 10], or Artinian Gorenstein border bases, based on a Gram-Schmidt
process, see [34]. Finally, in [6, 8], the authors proposed an algorithm that extends both Sakata’s and Scalar-FGLM,
based on polynomial divisions. While its complexity is still not satisfactory, this polynomial division viewpoint is a key
ingredient to the quasi-linear complexity of the guessing for uni-indexed sequences.

Likewise, algorithms were developed for relations with polynomial (in the indices) coefficients, such as (𝑖 + 1 −
𝑗)𝑢𝑖+1, 𝑗 − (𝑖 + 1)𝑢𝑖, 𝑗 = 0. For instance, Beckermann-Labahn [2] for uni-indexed sequences or Naldi-Neiger [35] for multi-
indexed sequences, which both fall in the more general category of divide-and-conquer algorithms for Padé-Hermite
approximants. An extension of Scalar-FGLM is designed in [7] while a hybrid approach based on Gröbner bases
computation, for quasi-commutative polynomials in an Ore algebra, is proposed in [7, 10].

Ph.D. Objectives

The main objective of this Ph.D. thesis is the design of fast algorithms for guessing linear recurrence relations, whether
with constant or polynomial coefficients, in order to accelerate polynomial system solving or the description of the
nature of the sequences coming from applications, such as combinatorics. This global goal will be decomposed into
three ambitious objectives, each of which we envision taking about a year of the Ph.D.

Year 1: Polynomial divisions for recurrences with polynomial coefficients. Following the paradigm shift from a linear
algebra viewpoint in Sakata’s algorithm [40, 41, 42] and in Scalar-FGLM [4, 5] to a multivariate polynomial one in [6,
8] for relations with constant coefficients, the goal is to guess linear recurrence relations with polynomial coefficients
using polynomial arithmetic instead of linear algebra [7]. From the generating series of a sequence and its derivatives,
or more precisely the mirror polynomials of a truncation of these series, the goal is to find algebraic combinations
thereof which are small modulo the monomial ideal ⟨𝑥D1

1 , . . . , 𝑥
D𝑛
𝑛 ⟩, where D1, . . . ,D𝑛 depend on the sequence terms we

allow ourselves to use.

Efficiency of guessing algorithms is based on two aspects: the number of performed operations and the number of
sequence terms that are needed. Indeed, in many applications, computing the sequence is the bottleneck. Thus, to make
this approach the most efficient, we shall closely look at the number of different sequences terms that are needed to
correctly guess the relations. Furthermore, to optimize the number of operations, we shall rely on efficient algorithms
for univariate polynomials and uni-indexed sequences. The main goal is to reach a complexity at most quadratic in

the size of the output instead of only cubic.

These guessing algorithms may find fake relations, this happens in general when too few terms are used or when most
of the terms are 0. This can be circumvent by structured guessing relations using mainly the nonzero sequence terms.
We will pay attention to these bad sequences so that our new algorithm avoids these fake relations as much as possible.

Year 2: Guessing recurrences with constant coefficients for solving polynomial systems with multiplicities. Generic
polynomial systems, i.e. those given by 𝑛 generic polynomials of degree 𝑑 in 𝑛 variables, satisfy two properties allowing
us to speed the change of order up. The first one is a shape position property satisfied by their ≺lex-Gröbner basis. It
means that the sought ≺lex-Gröbner basis is of type

𝑔𝑛 (𝑥𝑛), 𝑥𝑛−1 − 𝑔𝑛−1 (𝑥𝑛), . . . , 𝑥1 − 𝑔1 (𝑥𝑛), deg𝑔𝑛 = 𝑑𝑛 = D
and this ensures that FGLM algorithms, such as [9, 23, 24] only need one D × D-matrix, which is highly structured. For
instance, it has O(𝑡D) nonzero coefficients and asymptotics of 𝑡 are given in [24] for generic systems and in [3] for
generic determinantal systems. The second property is a stable one and is satisfied by their ≺drl-Gröbner basis. Its
main consequence is that the aforementioned matrix is computed for free [33].

In some situations where the system has roots with multiplicities, the sought ≺lex-Gröbner basis cannot be in shape
position, even after a generic linear change of variables. Such a system is called 2-thick in [1] and it requires a second
structured D × D-matrix, of a similar kind, to be computed: it has O(τD) non zero coefficients. Furthermore, in most
situations the stability property is still satisfied which means that the computation of this second matrix is cheap.
However, it does not ensure (actually it almost never can) that this second matrix is computed for free.
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A first goal is to derive a sharp complexity estimate on the computation of this second matrix based on the ≺drl-Gröbner
basis, exploiting the stability property and the work of Moreno-Socías [33], for the first matrix. As a by-product, we
will obtain complexity bounds on the computation of the sequence terms that appear in the multi-Hankel matrix built
by Scalar-FGLM [4, 5] to recover the ≺lex-Gröbner basis. Then, as a second goal, we will rely on the quasi-Hankel
structure of this multi-Hankel matrix, and fast algorithms for quasi-Hankel matrices [11, 12], to analyze the complexity
on the computation of the sought ≺lex-Gröbner basis. All in all, we will have a complete description and complexity

estimate of Faugère and Mou’s [23, 24] Sparse-FGLM algorithm for generic 2-thick systems.

Year 3: Quasi-commutative Gröbner bases computations. As stated before, more often than not, the bottleneck of
guessing algorithms is the computation of the sequence terms that are needed for the guessing. Furthermore, the
larger the sought relation, the larger the number of required sequence terms. Yet, the polynomials in a Gröbner basis
are far from independent: generically the larger ones are algebraic combinations of the smallest ones. This is the
key ingredient of the hybrid approach based on Gröbner bases computation to discover large relations without extra
queries to the sequence. These Gröbner bases computations differ from the above topics as they are in 2𝑛 variables
𝑥1, . . . , 𝑥𝑛, δ1, . . . , δ𝑛 satisfying quasi-commutative properties such as δ𝑘𝑥𝑘 = 𝑥𝑘 (δ𝑘 + 1). These commutation rules come
from the fact that shifting the 𝑘th index of a sequence by one (encoded by 𝑥𝑘 ) and multiplying the sequence term by
the 𝑘th index (encoded by δ𝑘 ) do not commute. Similar commutation rules may represent recurrence relations with
giant steps such as 𝑢2𝑖, 𝑗 − 2𝑢𝑖, 𝑗 = 0.

Following [30] and the generalization of Buchberger’s criteria, the goal will be to dive into the understanding of how
Faugère’s F4 algorithm [19] behaves or can be extended from the commutative setting to this one. To do so, we shall
study the module of trivial syzygies, and in particular what kind of information the commutation rules provide on the
syzygies, in order to get information on the sizes of the matrices that are built in F4.

Hilbert series and Hilbert polynomials are powerful tools that allow one to understand the complexity of computing
Gröbner bases. In the commutative case, one can derive a bound on the degree of the polynomials in a reduced Gröbner
basis for a total degree order, thanks to them, see [32, Section 4.5, Corollary]. We will investigate how knowing in
advance the Hilbert series can speed the Gröbner bases computations up, or how together with the Hilbert polynomials,
they can give us a bound on the degrees of the polynomials in the reduced ≺drl-Gröbner basis.

The main ambitious goal is to bring the complexity of ≺drl-Gröbner bases for quasi-commutative polynomials

to that of classical polynomials. This will be a first step for the computation of the contiguity matrices in particle
physics and algebraic statistics, see [31], which are analogues of the matrices used in the previous section.
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